Monthly Archives: July 2014

The Business Case for D-Wave

A tried and tested success formula for lazy journalism is the build-up and tear-down pattern.

The hype comes before the fall. In the context of information technology, Gartner copyrighted the aptly named term “hype cycle”. Every technology starts out in obscurity, but some take off stellarly, promising the moon but, with the notable exception of the Apollo program, falling a bit short of that. Subsequently, disillusionment sets in, sometimes going as far as vilification of the technology/product. Eventually sentiments hit rock bottom, and a more balanced and realistic view is adopted as the technology is mainstreamed.

Even Web technology followed this pattern to some extent, and this was clearly mirrored by the dot com stock bubble. At the height of the exuberance, the web was credited with ushering in a New Economy that would unleash unprecedented productivity growth. By now it has, of course, vastly improved our lives and economies, it just didn’t happen quite as rapidly and profitably as the market originally anticipated.

D‑Wave’s technology will inevitably be subjected to the same roller coaster ride. When you make it to the cover of Time magazine, the spring for the tear down reaction has been set, waiting for the trigger. The latter came in the form of the testing performed by Mathias Troyer et al. While all of this is as expected in the field of journalism, I was a bit surprised to see that one of the sites I link to in my blogroll followed this pattern as well. When D‑Wave was widely shunned by academia, Robert R.Tucci wrote quite positively about them, but now seems to have given up all hope in their architecture in reaction to this one single paper. He makes the typical case against investing into D-Wave that I’ve seen many times argued by academics vested in the gate model of quantum computing.

The field came to prominence due to the theoretically clearly established potential of gate based quantum computers to outperform classical machines. And it was Shor’s algorithm that captured the public’s imaginations (and the NSA’s attention). Widely considered to be a NP-intermediate problem Shor’s algorithm could clearly crack our encryption schemes if we had gate based QC with thousands of qubits. Unfortunately, this is still sci-fi, and so the best that has been accomplished so far was the factorization of 21 based on this architecture. The quantum speed-up would be there if we had the hardware, but alas at this point it is the embodiment of something that is purely academic with no practical relevance whatsoever.

There is little doubt in my mind that a useful gate based quantum computer will be eventually built, just like, for instance, a space elevator. In both cases it is not a matter of ‘if’ but just a matter of ‘when’.

I’d wager we won’t see either within the next ten years.

Incidentally, it has been reported that a space elevator was considered as a Google Lab’s project, but subsequently thrown out as it requires too many fundamental technological breakthroughs in order to make it a reality. On the other hand, Google snapped up a D-Wave machine.

So is this just a case of acquiring trophy hardware, as some critics on Scott’s blog contended? I.e. nothing more than a marketing gimmick? Or have they been snookered? Maybe they, too, have a gambling addiction problem, like D-Wave investors as imagined on the qbnets blog?

Of course none of this is the case. It just makes business sense. And this is readily apparent as soon as you let go of the obsession over quantum speed-up.

Let’s just imagine for a second that there was a company with a computing technology that was neither transistor nor semiconductor based. Let’s further assume that within ten years they managed to rapidly mature this technology so that it caught up to current CPUs in terms of raw performance, and that this was all done with chip structures that are magnitudes larger than what current conventional hardware needs to deploy. Also this new technology does not suffer from loss currents introduced via accidental quantum tunneling, but is actually designed around this effect and utilizes it. Imagine that they did all this with a fraction of the R&D sums spend on conventional chip architectures, and since the power consumption scaling is radically different from current computers, putting another chip into the box will hardly double the energy consumed by the system.

A technology like this would almost be like the kind that IBM just announced to focus their research on, trying to find a way to the post-silicon future.

So our ‘hypothetical company’ sounds pretty impressive, doesn’t it? You’d think that a company like Google that has enormous computational needs would be very interested in test driving an early prototype of such a technology. And since all of the above applies to D‑Wave this is indeed exactly what Google is doing.

Quantum speed-up is simply an added bonus. To thrive, D‑Wave only needs to provide a practical performance advantage per KWh. The $10M up-front cost, on the other hand, is a non-issue. The machines are currently assembled like cars before the advent of the Ford Model T. Most of the effort goes into the cooling apparatus and interface with the chip, and there clearly will be plenty of opportunity to bring down manufacturing cost once production is revved up.

The chip itself can be mass-produced using adapted and refined Lithographic processes borrowed from the semi-conductor industry; hence the cost basis for a wafer of D‑Wave chips will not be that different from the chip in your Laptop.

Just recently, D‑Wave’s CEO mentioned an IPO for the first time in a public talk (h/t Rolf D). Chances are, the early D-Wave investors will be laughing at the naysayers all the way to the bank long before a gate based quantum computer factors 42.

moon
A book I have to regularly read to our three year old Luna. So far she refrained from also requesting a gate based quantum computer.

Fusion and Other News – Memory Hole Rescue

Another post on D-Wave is in my blog queue, but with all this attention on quantum computing my other favorite BC based high tech start-up doesn’t get enough of my time – I haven’t written anything on energy and fusion for quite a while, despite some dramatic recent news (h/t Theo) with regards to another dark horse fusion contender.

Fortunately, there is another excellent blog out there which is solely focused on fusion technology and the various concepts in the field. The Polywell is covered in depth, but General Fusion also gets is due, for its innovative technology.

Another focus of mine, the trouble with contemporary theoretical physics also keeps falling through the cracks.  From my past posts one may get the impression that I am just yet another String apostate, but I don’t really have any trouble with String Theory as such, but rather with uncritical confirmation bias. Unfortunately, the latter cuts across all fields as nicely demonstrates in this recent post of hers.