Monthly Archives: September 2013

Just Say No to Fairytale Science

Terry Pratchett was one, if not my all time, favorite author. Luckily for me, he was also one of the most prolific ones, creating an incredible rich, hilarious yet endearing universe, populated with the most unlikely yet humane characters. What drew me in, when I started reading his books twenty years ago, was his uncanny sense for the absurdities of modern physics. Therefor it shouldn’t really come as a surprise that he also wrote the best popular science book there is. To honor the man, and mark his passing, I republish this post from 2013.

ScienceUntil recently, there was no competition if I were to be asked what popular science book I’d recommend to a non-physicist.   It was always Terry Pratchett’s The Science of Discworld. It comes with a healthy dose of humor and makes no qualms about the fact that any popularized version of modern physics essentially boils down to “lies to children”.

farewell-to-reality

 

 

 

But there is now a new contender, one that I can highly recommend:  Farewell to Reality: How Modern Physics Has Betrayed the Search for Scientific Truth. This book does an excellent job of retelling how we got to the current state in theoretical physics, that quantum computing theorist Scott Aaronson described this way:

 

ROTFL! Have you looked recently at beyond-Standard-Model theoretical physics? It’s a teetering tower of conjectures (which is not to say, of course, that that’s inherently bad, or that I can do better). However, one obvious difference is that the physicists don’t call them conjectures, as mathematicians or computer scientists would. Instead they call them amazing discoveries, striking dualities, remarkable coincidences, tantalizing hints … once again, lots of good PR lessons for us! 🙂

This was in a comment to his recent blog post where he has some fun with Nima Arkani-Hamed’s Amplituhedron. The latter is actually some of the more interesting results I have seen come out of mainstream theoretical physics, because it actually allows us to calculate something in a much more straightforward manner than before. That this is currently unfortunately restricted to the scope of an unphysical toy theory is all you need to know to understand how far current theoretical physics has ventured from actual verifiability by experiment.

For those who want to dig deeper and understand where to draw the line between current established physics and fairytale science, Jim Baggot’s book is a one stop shop.  It is written in a very accessible manner and does a surprisingly good job in explaining what has been driving theoretical physics, without recourse to any math.

At the beginning, the author describes what prompted him to write the book: one too many of those fanciful produced science shows, with lots of CGI and dramatic music, that presents String theory as established fact.  Catching himself yelling at the TV (I’ve been there), he decided to do something about it, and his book is the pleasant result.  I am confident it will inoculate any alert reader to the pitfalls of fairytale science and equip him (or her) with a critical framework to ascertain what truthiness to assign to various theoretical physics conjectures (in popular science fare they are, of course, never referenced as such, as Scott correctly observed).

This isn’t the first book that addresses this issue.  Peter Woit’s Not Even Wrong took it on, at a time when calling out String theory was a rather unpopular stance, but the timing for another book in this vein that addresses a broad lay public is excellent.  As Baggott wrote his book, it was already apparent that CERN’s LHR did not pick up any signs in support of SUSY and string theory.  Theorists have been long in denial about these elaborately constructed castles in the sky, but the reality seems to be slowly seeping in.

The point is that the scientific mechanism for self-correction needs to reassert itself.  It’s not that SUSY and String theory didn’t produce some remarkable mathematical results.  They just didn’t produce actual physics (although in unanticipated ways the Amplituhedron may get there). Trying to spin away this failure is doing science a massive disfavor. Let’s hope theoretical physicists take a cue from the the quantum computing theorists and clearly mark their conjectures. It’ll be a start.

Alternatively, they could always present the theory as it is done in this viral video.  At least then it will be abundantly clear that this is more art than science (h/t Rolf D.):

Science Media in a Bubble – Ready to Implode?

An ongoing theme of this blog is the media coverage that science receives. Unsurprisingly, given that most journalists have little STEM background, the public is often treated to heedless rewording of press releases e.g. this example from the QC realm. Also, sensationalist science news is hardly ever put into context – the story of the faster than light CERN neutrinos is a perfect example for the latter.

What is more surprising is when dedicated publication powerhouses such as Nature or Science are getting it wrong. Either by means of omission, such as when covering quantum computing but completely ignoring the adiabatic approach that D-Wave is following, or by short-circuiting the peer review process.  The latter may have set back sonoluminescence research by decades.

Sonoluminescence is the name for a peculiar effect where cavitation in a liquid can be stimulated by sound waves to the point where the small gaseous bubbles implode so rapidly that plasma forms that produces a telltale light signal. The following video is a nice demonstration of the effect (full screen mode recommended):

 

Since there is plasma involved, the idea that this could be used as yet another means to accomplish fusion was first patented as early as 1982.

In itself, the phenomenon is remarkable enough, and not well understood, giving ample justification for basic research of the effect.  After all, it is quite extraordinary that sound waves suffice to create such extreme conditions in a liquid.

But it is still quite a stretch to get from there to the necessary conditions for a fusion reaction.  The nuclear energy barrier is orders of magnitudes larger than the energies that are involved in the chemical domain, let alone the typical energy density of sound waves.  The following cartoon puts this nicely into perspective:

That is why to me this approach to fusion always seemed rather far fetched, and not very practical. So when a Science article about ten years ago claimed fusion evidence, I was skeptical, and wasn’t surprised that it was later contradicted by reports that portrayed the earlier results as ambiguous at best.  I had no reason to question the Science reporting.  I took the news at face value and paid little attention to this area of research until a recent report by Steven Krivit.  He brings investigative journalism to the domain of science reporting and the results are not pretty:

  1. The rebuttal to the original peer reviewed article first appeared on the Science blog without going through the usual review process.
  2. Contrary to what was reported, the scientists undermining the original research did not work independently on reproducing the results but only performed auxiliary measurements on the same experimental set-up.
  3. The detector they used was known to not be ideally suited to the neutron spectrum that was to be measured, and was too large to be ideally placed.
  4. The criticism relied on an ad-hoc coincidence criteria for the photon and neutron genesis that ignored the multi-bubble cavitation design of the original experiment.

The full investigative report is behind a pay-wall.  It is rather devastating.

To add insult to injury, the Science journalist instrumental in causing this mess, the one who promoted the rebuttal without peer review, later went on to teach journalism.

A casual and cynical observer may wonder why Steven makes such a fuss about this. After all, American mainstream journalism outside the realm of science is also a rather poor and sordid affair.  He-said-she-said reporting is equated with objectivity, and journalists are mostly reduced to being stenographers and water carriers of the political actors that they are supposed to cover (the few journalists who buck this trend I hold in the highest regard).

One may also argue that there wasn’t all that much damage done, because the critics, even if they didn’t work as advertised, may have gotten it right; The BBC, a couple of years later, sponsored an attempt at reproduction and also came up empty.

But there is one rather big and important difference:  Journals such as Science are not just media that report to the public at large.  Rather, they are the gatekeepers for what is accepted as scientific research, and must therefore be held to a higher standard.  Research that doesn’t get published in peer reviewed journals may as well not exist (unless it is privately financed applied R&D, that can be immediately commercialized, and is therefore deliberately kept proprietary).

The more reputable a peer reviewed journal, the higher the impact (calculating the impact factor is a science in itself). But arguably, it is worse to get work published in a reputable journal just to have the results then demolished by the same outfit, especially if the deck is stacked against you.

To me, this story raises a lot of questions and drives home that investigative science journalism is sorely lacking and badly needed. Who else is there to guard the gatekeepers?