Inflation not Over-Inflated after all?

Updated Below

Cosmology is quintessential popular science, but I always regarded it as the most dismal field of physics because there is no avenue for experiments to keep run-away speculations at bay. It's like trying to catch a perpetrator by staring at a multi-billion year old crime scene with the evidence all scattered.  And of course, since it deals with the beginning of time, scientists may have a hard time divorcing themselves from philosophical or religious beliefs (e.g. for a long time, Einstein presumably regarded the big bang theory as an invention by the clergy).

Given the ad-hoc nature of the cosmic inflation theory to fix problems with the big bang explanation, I always felt rather lukewarm about it. It just appeared too much like a convenient quick fix. But I am certainly warming up to it, given that the new detailed observations of the cosmic microwave radiation do fit the picture quite nicely. This radiation is essentially a convenient thermometer for the entire universe, as it can be regarded as thermal black body radiation. This is as close as we can get to the aforementioned primordial crime scene, taking advantage of the fact that the further we look into space, the earlier the events we observe.  If the mainstream big bang theory is correct, then the evidence for it must be splattered all over space encoded in this background radiation.

Brian Dodson (one of the finest pop science writers on the web) nicely explains why this data is such a treasure trove. I have little to add to his article other than the caveat that one should keep an open mind, that the evidence may yet still fit a completely different sequence of events (e.g. this one made some recent headlines, and it will be interesting to observe how such alternative models may be adapted to fit the newly released data).

And then there is, of course, the other raison d'etre of this blog, pointing out when popular science writing gets the details wrong.  The better outlets, such as the NYT, got it right when they wrote that this data offers the first direct evidence for gravitational waves as predicted by general relativity.  And a layman certainly can relate to this, simply by appreciating the released pictures, that almost look like ripples left in the sand by some ocean waves.

Slight temperature fluctuations, indicated by variations in color, of the cosmic microwave background of a small patch of sky (as provided by the BICEP2 Collaboration).

But there are a lot of press releases and news blurbs that leave out that crucial word "direct" when mentioning gravitational waves, ignoring the excellent indirect evidence that earned a Nobel prize in 1993. The latter is based on one of the neatest astronomical observations I can think of, which used the precise signal of a pulsar in a binary system to measure the declining orbit of the two stars. The observed orbital decay precisely matches the theoretical predictions of how much energy the system should disseminate via gravitational waves.

Just as accelerated electrical charges will under most circumstances emanate EM radiation, accelerated masses will send out gravitational waves, carrying away some of the kinetic energy of the system.

Of course, gravitational waves have the huge advantage of being the kind of physics accessible to immediate measurement, and this new cosmological evidence gives credence to the persistence in pushing for better gravitational wave detectors to eventually measure these waves directly.

Update

It didn't take long before some prominent push back, pointing to discrepancies between the BICEP2 data and previous data from the Planck and WMAP telescopes.

(h/t Sol Warda for prompting me to write this post) 

 

This entry was posted in Popular Science and tagged , , , , . Bookmark the permalink.

3 Responses to Inflation not Over-Inflated after all?

  1. Sol Warda says:

    Hi Henning: A very nice summary of the current state of affairs in Cosmology. I thank you for the compliment at the end of your blog. This blog, along with Geordie new post makes my day!. Thanks again.

  2. Leo Vuyk says:

    IMO, BICEP-2 -B-Modes are the END of a splitting Fractal Black Hole Big Bang nucleus (singularity) inflation process. So, the Big bang was the splitting and evaporation of the big crunch black hole ( all universal 10^90 particles closely packed inside) into what I call a black hole splitting fractal inflation creating the Lyman Alpha forest structure. What we observe in the B-Modes of the BICEP 2 image should be the END of the Fractal splitting black hole inflation process at the rim of our own Universal bubble and as part of the super symmetric navel cord multiverse.
    The cyclic universe is a continuous balancing game between dark energy in the vacuum Higgs field and dark matter inside black hole nuclei.
    Dark energy is the energetic oscillating Higgs field, dark matter is the particle based (Higgs-Preon) nuclei of all Black holes, with pair production by fluctuations at the BH horizon into positrons and electrons. Electrons at the outside horizon creating an electric potential and magnetic effects visible inside these B-MODES in the CMB.
    Conclusion: B-MODES arte not in the first place gravitational signals, but magnetic polarization created by splitting and pairing Fractal inflation black holes as the base for fast galaxy/ star formation ( Dual Galaxy Anchor Black Holes) in the early universe.

    See: The Navel Cord Multiverse with Raspberry shape.
    http://vixra.org/pdf/1312.0143v1.pdf
    The impossible zero point electric Black Hole
    http://vixra.org/pdf/1402.0044v1.pdf

    This is only partly in line with Max Tegmark:
    Quote: “It turns out that the physical process by which inflation generated these gravitational waves is the same process (discovered by Stephen Hawking) by which black holes evaporate. Whenever there’s an event horizon, quantum fluctuations cause it to emits radiation. For an evaporating hole, you look at its horizon from the outside; in our cosmos, we look at the horizon (basically the region from beyond which light can’t reach us) from the inside. Until today, there was no experimental evidence for Hawking’s prediction – but now there is! :-)”

    http://www.huffingtonpost.com/max-tegmark/good-morning-inflation-he_b_4976707.html

  3. Pingback: Breaking Science News on the Blogosphere? | Wavewatching

Comments are closed.